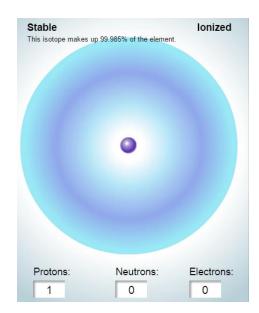
Name:	Date:

Student Exploration: Element Builder

Vocabulary: atom, atomic number, electron, electron dot diagram, element, energy level, ion, isotope, mass number, neutron, nucleus, periodic table, proton, radioactive, valence electrons

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

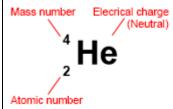
1.	What are some of the different substances that make up a pizza?			
2.	What substances make up water?			


3. What substances make up an iron pot? _____

Elements are pure substances that are made up of one kind of **atom**. Pizza is not an element because it is a mixture of many substances. Water is a pure substance, but it contains two kinds of atom: oxygen and hydrogen. Iron is an element because it is composed of one kind of atom.

Gizmo Warm-up

Atoms are tiny particles of matter that are made up of three particles: **protons**, **neutrons**, and **electrons**. The *Element Builder* GizmoTM shows an atom with a single proton. The proton is located in the center of the atom, called the **nucleus**.


- 1. Use the arrow buttons () to add protons, neutrons, and electrons to the atom. Press **Play** ().
 - A. Which particles are located in the nucleus?
 - B. Which particles orbit around the nucleus?

2. Turn on **Show element name**. What causes the element name to change? ______

Activity A: Subatomic particles	• Use the arrows to create an atom with two protons, two neutrons, and two electrons		@	•
	he properties of protons, neutrons, and electrons?			

Observe: Turn on Show element symbol and Element notation. Three numbers surround the element symbol: the mass number (A), electrical charge (no number is displayed if the atom is neutral), and the atomic number (Z).

- 2. <u>Investigate</u>: Watch how the numbers change as you add or remove particles.
- 3. Analyze: An **isotope** is an alternative form of an element. Each isotope of an element has the same number of protons, but a different number of neutrons. The isotope is represented by the atomic symbol and mass number, such as He-4. Some isotopes are stable, while others are **radioactive**, which means the atoms decay over time and emit radiation.
 - A. What are the stable isotopes of carbon? _____
 - B. What are the stable isotopes of nitrogen? _____
 - C. List two radioactive isotopes of oxygen: _____
- 4. <u>Practice</u>: Use the Gizmo to answer the following questions.
 - A. How many electrons are in a neutral atom of lithium? _____
 - B. How many neutrons are in an atom of Mg-25? _____
 - C. What is the mass number of an atom with 5 protons and 7 neutrons? _____
 - D. When at atom is charged, it is called an **ion**. How many electrons are in O²-? _____
 - E. How many electrons are in Mg²⁺? _____

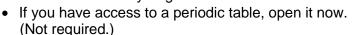
Activity B:

Electron arrangements

Get the Gizmo ready:

• Create a neutral hydrogen atom (1 proton, 0 neutrons, 1 electron).

Question: How are electrons arranged around the nucleus of an atom?


			_				
1.	Observe: Add electrons to the atom until you have used all the available electrons. What do						
	you no	you notice?					
2.	<u>Analyze</u> : Electrons are arranged in orbits called energy levels . The Gizmo shows all of the first two energy levels but only part of the third energy level.						
	A.	How many	electrons can fit	t in the first ener	gy level?		
	В.	How many	electrons can fit	t in the second e	nergy level? _		
	C.	How many	electrons fit in tl	he part of the thi	rd energy leve	el shown?	
3.	help to	create cher	nical bonds. Cre	ectrons in the oreate a lithium ato	om (3 protons,	4 neutrons, 3	
	1100011	idity valorioc		ir a riodirai ilailai			
4.	<u>Diagram</u> : Turn on Show electron dot diagram . The valence electrons of an atom are shown in an electron dot diagram . Each dot represents a valence electron.						
	Draw t	the electron	dot diagram for	neutral lithium: _			
5.	. <u>Practice</u> : Turn off Show electron dot diagram . Use the Gizmo to create a ne each of the following elements. Draw an electron dot diagram for each. When finished, turn on Show electron dot diagram and check your answers.						
	Н	He	Li	Ве	В	С	N
	0	F	Ne	Na	Mg	Al	Si
6.	Extend your thinking: Many chemical properties are determined by the number of valence electrons. Elements with the same number of valence electrons will have similar properties.						
	Which	element has	s similar propert	ies to lithium? _	E	Beryllium?	
	Evnlai	n·					

Extension:

Get the Gizmo ready:

Create a neutral hydrogen atom.
If you have access to a periodic t

Question: The 117 or so known elements are arranged in the **periodic table**. Why does the periodic table have the shape it has?

1. Form a hypothesis: Look at the first three rows of the periodic table below.

Why do you think the elements are arranged the way that they are? _____

2. <u>Draw diagrams</u>: Create an electron dot diagram for each of the elements below. Use the Gizmo to help you do this. To check your work, turn on **Show electron dot diagram**.

Н							He
Li	Be	В	С	N	Ο	F	Ne
Na	Mg	Al	Si	Р	S	CI	Ar

3. Analyze: What do the elements in each column of the periodic table have in common?